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Key words: asymptoti stability; Armellini-Tonelli-Sansone Theorem; stepfuntion oe�ients; half-linear di�erential equation.2000 Mathematis Subjet Classi�ation: Primary 34D20, 39A30.1 IntrodutionConsider the di�erene equation
xn+1 = Mnxn, n = 0, 1, 2, . . . , (1)where xn ∈ R

2 and Mn ∈ R
2×2. We do not onsider the trivial ase whenall the entries of Mn are equal to 0 for some n. Let ‖M‖ be the spetralnorm, i.e., ‖M‖ is the square root of the largest eigenvalue of the symmetripositive semi-de�nite matrix MTM. It is well-known [3, p. 232℄ that if

∏

∞

n=0 ‖Mn‖ = 0, then all solutions of equation (1) tend to zero as n → ∞,i.e., the zero solution is asymptotially stable. Á. Elbert [10℄ gave a su�ientondition for the asymptoti stability under the assumptions
(i)
∏

∞

n=0 max {‖Mn‖, 1} < ∞,
(ii) 0 <

∏

∞

n=0 ‖Mn‖,
(iii)

∏

∞

n=0 max {| detMn|, 1} < ∞.His proof was based on estimation of the norm of some speial matries anda �triky� deomposition of matries Mn. He applied this result to deduean Armellini-Tonelli-Sansone-type theorem (abbreviated as A-T-S theorem),i.e., a theorem guaranteeing asymptoti stability with respet to x for thezero solution of the linear seond order di�erential equation
x′′ + a(t)x = 0 (a(t) ր ∞, t → ∞) (2)with step funtion oe�ient a [11, 12℄.I. Bihari [5℄ and Elbert [9℄ introdued the half-linear di�erential equation

x′′|x′|m−1 + q(t)|x|m−1x = 0, m ∈ R
+, (3)whih has attrated attention, and it has an extensive literature (see, e.g., [7℄,[8℄ and the referenes therein). Bihari [6℄ has generalized the A-T-S theoremto this equation in the ase of smooth oe�ient q, requiring �regular� growthEJQTDE, 2011 No. 38, p. 2



of q. Roughly speaking, this ondition means that the growth of q annotbe loated to a set with small measure (see Setion 3). Of ourse, a stepfuntion q does not satisfy this ondition. Elbert's method, using a wide anddeep mahinery from linear analysis, does not apply to the half-linear ase.In this paper we establish an A-T-S theorem for the half-linear di�erentialequation with step funtion oe�ient q. The proof is based upon a geometrimethod. This method applies also to the linear ase, so we an give a newsimple proof for Elbert's result, assuming only lim supn→∞

∏n

k=0 ‖Mk‖ < ∞instead of (i) � (iii).2 Di�erene equationTo investigate equation (1), we will de�ne a di�erene equation on the planewhih has the same stability properties as equation (1). Let us introduethe following notations for the matries of the re�etion with respet to the
x-axis, and of the rotation around the origin ounterlokwise with ϕ in R

2:
R =

(

1 0
0 −1

)

, E(ϕ) =

(

cos ϕ − sin ϕ
sin ϕ cos ϕ

)

. (4)Obviously,
E(ϕ1)E(ϕ2) = E(ϕ1 + ϕ2), E(ϕ)R = RE(−ϕ). (5)We will need the following theorem (see, e.g., [16, p. 188℄):Theorem (polar fatorization). Every M ∈ R

n×n an be represented as aprodut M = SQ where S is symmetri, positive semi-de�nite, and Q isorthogonal. S is uniquely determined while Q is unique if and only if M isnon-singular.In this theorem S is the square root of the symmetri positive semi-de�nite matrix MTM. If M ∈ R
n×n is non-singular, then the produt MTMis positive de�nite, thus it an be diagonalized: MTM = PD2P−1, where D2is the diagonal matrix ontaining the eigenvalues of MTM and the orthogonalmatrix P has the proper eigenvetors in its olumns. Then S = PDP−1 and

M = PDP−1Q. (6)EJQTDE, 2011 No. 38, p. 3



Denote by Λ and λ the eigenvalues of MTM (‖M‖ = Λ ≥ λ > 0). Supposethat the diagonal elements in D are in dereasing order. If detM = 0, then
S is positive semi-de�nite and the symmetri matrix S̃ := ‖M‖−1S an berepresented as S̃ = PD̃P−1, where P is orthogonal and

D̃ =

(

1 0
0 0

)

.Applying the above argument to the oe�ient matries of (1), we have
Mn = ‖Mn‖PnD̂nP

−1
n Qn, (7)where

D̂n :=

(

1 0
0 dn

)

, dn :=

{ √

λn

Λn

> 0, if detMn 6= 0;
0, if detMn = 0. (8)Let us examine the �ow Fn :=

∏n

k=0 Mk of equation (1). Using the fat, thatthe produt of orthogonal matries are also orthogonal, Fn has the form
Fn =

n
∏

k=0

PkD̂kP
−1
k Qk =

(

n
∏

k=0

‖Mk‖
)

Pn

(

n
∏

k=0

D̂kOk

)

, (9)where the orthogonal matries Ok (k = 0, . . . , n + 1) are de�ned by
O0 := P−1

0 Q0, Ok = P−1
k QkPk−1, k = 1, . . . , n, (10)and the produt ∏n

k=0 Nk is meant in the order Nn · · ·N0. It is known fromthe elementary geometry that in the plane every orthogonal transformationis a rotation or a produt of a rotation and a re�etion with respet to the
x-axis. Thus, if Ok is not a rotation, then let Ok = E(ϑk)R for some ϑk.Sine R is ommutable with every diagonal matries, from (5) we obtain

Fn =

(

n
∏

k=0

‖Mk‖
)

RmE(αn)

(

n
∏

k=0

D̂kE(ωk)

) (11)for some m ∈ N0 (m ≤ n+1) and some ωk's, where αk, ωk an be alulatedfrom M0, . . . ,Mk. EJQTDE, 2011 No. 38, p. 4



Consider now the di�erene equation
xn+1 = ‖Mn‖

(

1 0
0 dn

)(

cos ωn − sin ωn

sin ωn cos ωn

)

xn,

0 ≤ dn ≤ 1, n = 0, 1, 2, . . .

(12)The equilibrium (0, 0) of (1) is stable (asymptotially stable) if and only ifthe equilibrium (0, 0) of (12) is stable (asymptotially stable). Now, we anstate the main theorem of this setion:Theorem 1. Suppose that lim supn→∞

∏n

k=0 ‖Mk‖ < ∞. If
∞
∑

n=0

min{1 − dn, 1 − dn+1} sin2 ωn+1 = ∞, (13)then the zero solution of di�erene equation (12) is asymptotially stable.Proof. Obviously, it is enough to deal with the ase ‖Mk‖ = 1 (k = 0, 1, . . .)and to show that ∥∥
∥

∏

∞

n=0 D̂nE(ωn)
∥

∥

∥
=0. Geometrially, the dynamis of (12)is omposed of onseutive rotations and ontrations along the y-axis. Letus introdue polar oordinates r, ϕ so that

x :=

(

x
y

)

, x = r sin ϕ, y = r cos ϕ.In these oordinates the phase spae for system (12) is r ≥ 0, −∞ < ϕ < ∞.Using the notations
x̃n = E(ωn)xn, κn := ϕn+1 − (ϕn + ωn), ∆rn := rn+1 − rn, n = 0, 1, . . .we have

√

x2
n + y2

n =
√

x̃2
n + ỹ2

n, xn+1 = x̃n, yn+1 = dnỹn

ϕn+1 = ϕ0 +
n
∑

i=0

(ωi + κi), rn+1 = r0 +
n
∑

i=0

∆ri,and ∆ri ≤ 0 beause of the ontration. Therefore, the sequene {rn}∞n=0 ismonotonously dereasing. EJQTDE, 2011 No. 38, p. 5



Suppose that the statement of the theorem is not true, i.e., r̄ := limn→∞ rn

> 0. Then
−∆ri = ri − ri+1 =

√

x2
i + y2

i −
√

x2
i+1 + y2

i+1

=
√

x̃2
i + ỹ2

i −
√

x̃2
i + d2

i ỹ
2
i =

(1 − d2
i )ỹ

2
i

√

x̃2
i + ỹ2

i +
√

x̃2
i + d2

i ỹ
2
i

≥ (1 − d2
i )r

2
i cos2(ϕi + ωi)

2ri

≥ r̄

2
(1 − di) cos2(ϕi + ωi).

(14)
We want to get the ontradition that the sum of the lower estimating termsin (14) diverges. The problem is that these terms ontain ϕi's, whih dependon solutions, so they are unknown; we have to get rid of them. Obviously,

| cos(ϕi + ωi)| = | cos ϕi cos ωi − sin ϕi sin ωi|
≥ | sin ϕi|| sinωi| − | cos ϕi|| cosωi|.

(15)For arbitrarily �xed 0 < γ < ε < 1, de�ne µ(ε, γ) :=
√

1 − γ2 − εγ. Sine
limε→0,γ→0 µ(ε, γ) = 1, we may assume that µ(ε, γ) ≥ 1/2. We distinguishthree ases:a) γ| sin ωi| ≥ | cos ϕi| and | cos ωi| ≥ ε. Then | sin ϕi| ≥ | cos ωi|, andfrom (15) we get

| cos(ϕi + ωi)| ≥ | sinωi|| cosωi|(1 − γ) ≥ | sin ωi|(1 − γ)ε. (16)In this ase, estimate (14) is ontinued as
−∆ri ≥

r̄

2
(1 − di) cos2(ϕi + ωi) ≥

r̄

2
(1 − γ)2ε2(1 − di) sin2 ωi. (17)b) γ| sin ωi| ≥ | cos ϕi| and | cos ωi| < ε. Then

| sinϕi| ≥
√

1 − γ2 sin2 ωi ≥
√

1 − γ2, (18)and
| cos(ϕi + ωi)| ≥ (

√

1 − γ2 − εγ)| sinωi| = µ(ε, γ)| sinωi| ≥
1

2
| sinωi|.Then

−∆ri ≥
r̄

2
(1 − di) cos2(ϕi + ωi) ≥

r̄

8
(1 − di) sin2 ωi. (19)EJQTDE, 2011 No. 38, p. 6



) γ| sin ωi| < | cos ϕi|. In this ase we an estimate −∆ri−1 (insteadof −∆ri) from below by | sin ωi|. In fat, using also the inequality
| cosϕi| =

|yi|
√

x2
i + y2

i

=
di−1|ỹi−1|

√

x̃2
i−1 + d2

i−1ỹ
2
i−1

≤ |ỹi−1|
√

x̃2
i−1 + ỹ2

i−1

= | cos(ϕi−1 + ωi−1)|,
(20)from (14) we obtain

−∆ri−1 ≥
r̄

2
(1 − di−1) cos2(ϕi−1 + ωi−1) ≥

r̄

2
(1 − di−1) cos2 ϕi

≥ r̄

2
γ2(1 − di−1) sin2 ωi ≥

r̄

2
γ2 min{1 − di−1, 1 − di} sin2 ωi.(21)Setting

c :=
r̄

2
min{(1 − γ)2ε2;

1

4
; γ2} > 0,for every i we have

c min{1 − di−1; 1 − di} sin2 ωi ≤ −∆ri−1 − ∆ri = ri−1 − ri+1.Summarizing these inequalities we obtain
c

∞
∑

i=1

min{1 − di−1; 1 − di} sin2 ωi ≤ r0 − r̄ < ∞,whih ontradits assumption (13).3 The half-linear equationIn this setion we onsider the half-linear seond order di�erential equation
x′′|x′|n−1 + q(t)|x|n−1x = 0, n ∈ R

+, (22)whih was introdued by Bihari [5℄ and Elbert [9℄. They alled it half-linearbeause its solution set is homogeneous, but it is not additive. This equationis a generalization of the seond order linear di�erential equation
x′′ + q(t)x = 0 (23)EJQTDE, 2011 No. 38, p. 7



desribing the motion of a linear osillator. Following P. Hartman [13, p.500℄, we all a non-trivial solution x0(t) of (22) small if
lim
t→∞

x0(t) = 0. (24)H. Milloux [18℄ proved, that if q is di�erentiable, monotonously inreasingand tends to in�nity as t → ∞, then the linear equation (23) has at least onesmall solution. He also onstruted an equation with suh a oe�ient q hav-ing not small solutions, too. The famous Armellini-Tonelli-Sansone Theorem(see, e.g., [17℄) gave a su�ient ondition guaranteeing that all solutions of(23) were small. Many papers examined and sharpened the above theorems,even for nonlinear di�erential equations or di�erene equations (see, e.g.,[15, 17℄ and the referenes therein).F. V. Atkinson and Elbert [4℄ extended the theorem of H. Milloux tothe half-linear di�erential equation (22). An extension of the A-T-S theoremto (22) was given by Bihari with the following onept. A nondereasingfuntion f : [0,∞) → (0,∞) with limt→∞ f(t) = ∞ is alled to grow in-termittently if for every ε > 0 there is a sequene {(ai, bi)}∞i=0 of disjointintervals suh that ai → ∞ as i → ∞, and
lim sup

i→∞

i
∑

k=1

bk − ak

bi

≤ ε,

∞
∑

i=1

(f(ai+1) − f(bi)) < ∞are satis�ed. If suh a sequene does not exist, then f is alled to growregularly.Theorem B (Bihari [6℄). If q is ontinuously di�erentiable and it grows toin�nity regularly as t → ∞, then all non-trivial solutions of equation (22)are small.The simplest ase of the intermittent growth is when q is a monotonouslyinreasing step funtion. In this setion we will examine this ase, i.e., theequation
x′′|x′|n−1 + qk|x|n−1x = 0 (tk ≤ t < tk+1, k = 0, 1, . . .), (25)where

t0 = 0, lim
k→∞

tk = ∞,

0 < q0 ≤ q1 ≤ . . . ≤ qk ≤ qk+1 ≤ . . . , lim
k→∞

qk = ∞.EJQTDE, 2011 No. 38, p. 8



In [14℄, the �rst author of this paper showed that under these onditionsequation (25) has a small solution. Elbert [11, 12℄ proved an A-T-S theoremfor the linear (n = 1) ase of equation (25) as a diret appliation of histheorem on the asymptoti stability of the trivial solution of (1).Theorem C (Elbert [11℄). Let n = 1. If
∞
∑

k=0

min

{

1 − qk

qk+1
, 1 − qk+1

qk+2

}

sin2(
√

qk+1(tk+2 − tk+1)) = ∞, (26)then all non-trivial solutions of equation (25) are small.Our main goal is to extend Theorem C to the ase n > 1 of half-linearequation (25). To this end, we need the so-alled generalized sine and osinefuntions introdued by Elbert [9℄. Consider the solution S = Sn(Φ) of theinitial value problem
{

S ′′|S ′|n−1 + S|S|n−1 = 0

S(0) = 0, S ′(0) = 1.
(27)Multiplying the di�erential equation by S ′ and integrating it over [0, Φ] weobtain the relation

|S ′|n+1 + |S|n+1 = 1 (−∞ < Φ < ∞), (28)whih an be onsidered as a generalization of the lassial identity cos2 ϕ +
sin2 ϕ = 1 (the ase n = 1). S and S ′ are periodi funtions with period 2π̂,where π̂ is de�ned as

π̂ =
2 π

n+1

sin π
n+1

,whih gives bak π in the ordinary ase n = 1 (see [9℄). Furthermore, S isodd and S ′ is even. The generalized tangent funtion an be introdued aswell:
T (Φ) =

S(Φ)

S ′(Φ)
.Now we an state our main theorem.Theorem 2. Let n > 1. If

∞
∑

k=0

min

{

1 − qk

qk+1

, 1 − qk+1

qk+2

}

∣

∣

∣

∣

∣

S

(

q
1

n+1
k+1 (tk+2 − tk+1)

)
∣

∣

∣

∣

∣

n+1

= ∞, (29)then all non-trivial solutions of equation (25) are small.EJQTDE, 2011 No. 38, p. 9



Proof. First, using the notation q(t) := qk (tk ≤ t < tk+1, k = 0, 1, 2 . . .) weintrodue a new time variable
τ = ϕ(t) =

∫ t

0

q(s)
1

n+1 ds, τk := ϕ(tk). (30)Let x(t) = x(ϕ−1(τ)) =: y(τ), where ϕ−1 is the inverse funtion of ϕ. Then
x′(t) = ẏ(τ)q

1

n+1 (t), x′′(t) = ÿ(τ)q
2

n+1 (t) (t 6= tk, k = 0, 1, 2, . . .),where (·)· = d(·)/dτ . Thus, equation (25) is transformed into the form
ÿ(τ)|ẏ(τ)|n−1 + |y(τ)|n−1y(τ) = 0, (τ 6= τk k = 0, 1, . . .). (31)Sine any solution x of equation (25) has to be ontinuously di�erentiable on

(0,∞), x′(tk+1 − 0) = x′(tk+1 + 0) = x′(tk+1) must hold for every k ∈ N, i.e.,
ẏ(τk+1) = ẏ(τk+1 + 0) =

(

qk

qk+1

)
1

n+1

ẏ(τk+1 − 0),where f(t − 0) and f(t + 0) denotes the left-hand side and the right-handside limit of a funtion f at t, respetively. We obtain that (25) is equivalentto the following di�erential equation with impulses:






ÿ(τ)|ẏ(τ)|n−1 + |y(τ)|n−1y(τ) = 0, τ 6= τk

ẏ(τk+1) =
(

qk
qk+1

)

1
n+1

ẏ(τk+1 − 0), k = 0, 1, 2, . . .
(32)Let us introdue the generalized polar oordinates ẏ = ρS ′(Φ), y = ρS(Φ),where

ρ = (|ẏ|n+1 + |y|n+1)
1

n+1 , T (Φ) =
y

ẏ
, −∞ < Φ < ∞.This is the so-alled generalized Prüfer transformation. With the aid of thesevariables we an rewrite equation (31) into

Φ̇ = 1, ρ̇ = 0, (τk ≤ τ < τk+1, k = 0, 1, . . .). (33)So the dynamis of system (32) on the Minkowski plane [19℄ (ẏ, y) is thefollowing. It turns any point (ẏ0, y0) around the origin on the MinkowskiEJQTDE, 2011 No. 38, p. 10



irle with radius ρ0 := (|ẏ0|n+1 + |y0|n+1)
1

n+1 on [τ0, τ1), and at τ1 the point
(ẏ(τ1 − 0), y(τ1 − 0)) jumps to the point

(ẏ(τ1), y(τ1)) :=

(

(

q0

q1

)
1

n+1

ẏ(τ1 − 0), y(τ1 − 0)

)

.This proess is repeated onseutively for [τ1, τ2), [τ2, τ3), . . .. De�ne
ρk :=

(

|ẏ(τk)|n+1 + |y(τk)|n+1
)

1

n+1 , Φk := Φ(τk), Ωk := τk+1 − τk,

∆ρk := ρk+1 − ρk, κk := Φk+1 − (Φk + Ωk), k = 0, 1, . . .Obviously,
Φk+1 = Φ0 +

k
∑

i=0

(Ωi + κi), ρk+1 = ρ0 +

k
∑

i=0

∆ρi, k = 0, 1 . . .Sine ∆ρi ≤ 0, the sequene {ρk}∞k=0 is monotonously dereasing, therefore ithas a limit ρ̄ := limk→∞ ρk. If the statement of the theorem is not true, thenthere exists a solution (ρ, Φ) suh that ρ̄ > 0. Let us onsider this solutionand estimate −∆ρi:
−∆ρi = ρi − ρi+1

= (|ẏ(τi)|n+1 + |y(τi)|n+1)
1

n+1 − (|ẏ(τi+1)|n+1 + |y(τi+1)|n+1)
1

n+1

= (|ẏ(τi+1 − 0)|n+1 + |y(τi+1 − 0)|n+1)
1

n+1

− (|ẏ(τi+1)|n+1 + |y(τi+1)|n+1)
1

n+1

= (|ẏ(τi+1 − 0)|n+1 + |y(τi+1 − 0)|n+1)
1

n+1

−
(

qi

qi+1
|ẏ(τi+1 − 0)|n+1 + |y(τi+1 − 0)|n+1

)
1

n+1

=
1

n + 1

(

ρn+1
i+1 + ηi

(

ρn+1
i − ρn+1

i+1

))

−
n

n+1

×
(

1 − qi

qi+1

)

|ẏ(τi+1 − 0)|n+1

≥ 1

n + 1

(

(ρ̄)n+1
)

−
n

n+1

(

1 − qi

qi+1

)

ρn+1
i |S ′(Φi + Ωi)|n+1

≥ ρ̄

n + 1

(

1 − qi

qi+1

)

|S ′(Φi + Ωi)|n+1

(34)

EJQTDE, 2011 No. 38, p. 11



with some ηi ∈ (0, 1) for all i ∈ N0. Now we need to estimate |S ′(φi + Ωi)|from below by either |S(Ωi)| or |S(Ωi+1)|, similarly to the proof of Theorem1, where we used the addititonal formulae for the osine funtion. However,to our best knowledge, the problem of �nding exat addition formulae for Sand S ′ is not ompletely solved, although there are some papers about thistopi (see, e.g., [1℄, [2℄). Therefore, to omplete the proof we need a newmethod di�erent from one we used in the proof of Theorem 1 after formula(14).Funtions |S ′(Φ + Ω)| and |S(Ω)| are π̂-periodi with respet to bothvariables Φ, Ω, hene we may restrit ourselves to the quadrant [−π̂/2, π̂/2]×
[−π̂/2, π̂/2] on the (Φ, Ω) plane. Thanks to the symmetry properties of Sand S ′, it is enough to make the estimate on Q := [0, π̂/2] × [0, π̂/2].At �rst, let us handle the set

Qε := {(Φ, Ω) ∈ Q : |S ′(Φ)| < ε},where ε > 0 is small enough. The omplementer set of Qε with respet to
Q will be treated in another way. The same way will be used also for theomplementer set of

Qγ := {(Φ, Ω) ∈ Q : |S ′(Φ)| ≤ γ|S(Ω)|} (0 < γ < 1),so now we onsider the set Qγ
ε := Qε ∩ Qγ (see the �gure).A part of the boundary of this set is a piee of the urve de�ned by theequation

Γ : |S ′(Φ)| = γ|S(Ω)|.We show that the tangent to Γ at (π̂/2, 0) is the line Φ = π̂/2, i.e.,
lim

Φ→
π

2
−0

f ′(Φ) = −∞; f(Φ) := S−1

(

1

γ
S ′(Φ)

)

, (35)provided n > 1. The statement of the theorem for the linear ase n = 1 wasproved in Theorem 1, so proving (35) we an restrit ourselves to the ase
n > 1.It is easy to see that

(S−1)′(W ) =
1

(1 − W n+1)
1

n+1

(0 ≤ W ≤ 1).EJQTDE, 2011 No. 38, p. 12



Besides, by equation (27) we have
S ′′(Φ) = −|S ′(Φ)|−n+1|S(Φ)|n−1S(Φ). (36)Therefore, ddΦ
f(Φ) = f ′(Φ) =

− 1
γ
(S ′(Φ))−n+1Sn(Φ)

(

1 − 1
γn+1 (S ′(Φ))n+1

)
1

n+1

,onsequently, (35) holds, independently of γ. (35) implies the existene of aEJQTDE, 2011 No. 38, p. 13



δ > 0 suh that
f ′(Φ) < −2

(

(S ′)−1(ε) <
π̂

2
− δ < Φ <

π̂

2

)

,whene we get
f(Φ) ≥ −2

(

Φ − π̂

2

)

,whih means that Γ is loated on the right-hand side of the line Ω = −2(Φ−
π̂/2) near the point (π̂/2, 0) (see the �gure). To estimate |S ′(Φi + Ωi)| frombelow by |S(Ωi)| in (34) we have to estimate the quotient |S ′(Φ + Ω)| /|S(Ω)|from below. In Qγ

ε we derease this quotient exhanging point (Φ, Ω) for thehorizontally orresponding point (π̂/2 − Ω/2, Ω) of the line Φ = π̂/2 − Ω/2(see the �gure again). Therefore, by the L'Hospital Rule and (36) we get
limΦ→

π̂

2
−0,Ω→0+0, (Φ,Ω)∈Q

γ

ε

|S ′(Φ + Ω)|
|S(Ω)| ≥ lim

Ω→0+0

−S ′

((

π̂
2
− 1

2
Ω
)

+ Ω
)

S(Ω)

= lim
Ω→0+0

−S ′

(

π̂
2

+ 1
2
Ω
)

S(Ω)
= lim

Ω→0+0

−S ′′

(

π̂
2

+ 1
2
Ω
)

1
2

S ′(Ω)

= lim
Ω→0+0

∣

∣

∣
S ′

(

π̂
2

+ Ω
2

)
∣

∣

∣

−n+1 ∣
∣

∣
S
(

π̂
2

+ Ω
2

)
∣

∣

∣

n−1

S
(

π̂
2

+ Ω
2

)

2S ′(Ω)
= ∞.This means that there exists a κ > 0 suh that

|S ′(Φ + Ω)| ≥ κ|S(Ω)| ((Φ, Ω) ∈ Qγ
ε ). (37)Now we are ready to omplete estimate (34). We distinguish three ases:A) (Φi, Ωi) ∈ Qγ

ε
. Then by (34) and (37) we have
−∆ρi ≥

ρ

n + 1

(

1 − qi

qi+1

)

κn+1|S(Ωi)|n+1. (38)In the remaining ases we estimate −∆ρi−1. By the analogue of (20) it isalways true that
−∆ρi−1 ≥ ρ

n + 1

(

1 − qi−1

qi

)

|S ′(Φi−1 + Ωi−1)|n+1

≥ ρ

n + 1

(

1 − qi−1

qi

)

|S ′(Φi)|n+1.EJQTDE, 2011 No. 38, p. 14



B) (Φi, Ωi) ∈ Qε\Qγ
ε
. Then |S ′(Φi)| ≥ γ|S(Ωi)|, and

−∆ρi−1 ≥ γn+1 ρ

n + 1

(

1 − qi−1

qi

)

|S(Ωi)|n+1. (39)C) (Φi, Ωi) ∈ Q\Qε. Then |S ′(Φi)| ≥ ε|S(Ωi)| and
−∆ρi−1 ≥ εn+1 ρ

n + 1

(

1 − qi−1

qi

)

|S(Ωi)|n+1. (40)Setting
C :=

ρ

n + 1
min{κn+1; γn+1; εn+1} > 0,and taking into aount (38), (39), (40), for every i we have

C min

{

1 − qi−1

qi

; 1 − qi

qi+1

}

|S(Ωi)|n+1 ≤ ∆ρi−1 − ∆ρi = ρi−1 − ρi+1.Summarizing these inequalities we obtain
C

∞
∑

n=1

min

{

1 − qi−1

qi

; 1 − qi

qi+1

}

|S(Ωi)|n+1 ≤ ρ0 − ρ < ∞,whih ontradits the assumption of the theorem.Theorem 2 extends Elbert's Theorem C to half-linear equations provided
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