Asymptotic stability of two dimensional systems of linear difference equations and of second order half-linear differential equations with step function coefficients

L. Hatvani ${ }^{1 *}$ and L. Székely ${ }^{2}$
${ }^{1}$ Corresponding author
University of Szeged, Bolyai Institute
Aradi vértanúk tere 1, Szeged, H-6720 Hungary
E-mail: hatvani@math.u-szeged.hu
${ }^{2}$ Szent István University
Institute of Mathematics and Informatics
E-mail: szekely.laszlo@gek.szie.hu

Abstract

We give a sufficient condition guaranteeing asymptotic stability with respect to x for the zero solution of the half-linear differential equation $$
x^{\prime \prime}\left|x^{\prime}\right|^{n-1}+q(t)|x|^{n-1} x=0, \quad 1 \leq n \in \mathbb{R},
$$ with step function coefficient q. The geometric method of the proof can be applied also to two dimensional systems of linear non-autonomous difference equations. The application gives a new simple proof for a sharpened version of Á. Elbert's asymptotic stability theorems for such difference equations and linear second order differential equations with step function coefficients.

[^0]EJQTDE, 2011 No. 38, p. 1

Key words: asymptotic stability; Armellini-Tonelli-Sansone Theorem; step function coefficients; half-linear differential equation.
2000 Mathematics Subject Classification: Primary 34D20, 39A30.

1 Introduction

Consider the difference equation

$$
\begin{equation*}
\mathbf{x}_{n+1}=\mathbf{M}_{n} \mathbf{x}_{n}, \quad n=0,1,2, \ldots, \tag{1}
\end{equation*}
$$

where $\mathbf{x}_{n} \in \mathbb{R}^{2}$ and $\mathbf{M}_{n} \in \mathbb{R}^{2 \times 2}$. We do not consider the trivial case when all the entries of \mathbf{M}_{n} are equal to 0 for some n. Let $\|\mathbf{M}\|$ be the spectral norm, i.e., $\|\mathbf{M}\|$ is the square root of the largest eigenvalue of the symmetric positive semi-definite matrix $\mathbf{M}^{\mathrm{T}} \mathbf{M}$. It is well-known [3, p. 232] that if $\prod_{n=0}^{\infty}\left\|\mathbf{M}_{n}\right\|=0$, then all solutions of equation (1) tend to zero as $n \rightarrow \infty$, i.e., the zero solution is asymptotically stable. Á. Elbert [10] gave a sufficient condition for the asymptotic stability under the assumptions
(i) $\prod_{n=0}^{\infty} \max \left\{\left\|\mathbf{M}_{n}\right\|, 1\right\}<\infty$,
(ii) $0<\prod_{n=0}^{\infty}\left\|\mathbf{M}_{n}\right\|$,
(iii) $\prod_{n=0}^{\infty} \max \left\{\left|\operatorname{det} \mathbf{M}_{n}\right|, 1\right\}<\infty$.

His proof was based on estimation of the norm of some special matrices and a "tricky" decomposition of matrices \mathbf{M}_{n}. He applied this result to deduce an Armellini-Tonelli-Sansone-type theorem (abbreviated as A-T-S theorem), i.e., a theorem guaranteeing asymptotic stability with respect to x for the zero solution of the linear second order differential equation

$$
\begin{equation*}
x^{\prime \prime}+a(t) x=0 \quad(a(t) \nearrow \infty, t \rightarrow \infty) \tag{2}
\end{equation*}
$$

with step function coefficient $a[11,12]$.
I. Bihari [5] and Elbert [9] introduced the half-linear differential equation

$$
\begin{equation*}
x^{\prime \prime}\left|x^{\prime}\right|^{m-1}+q(t)|x|^{m-1} x=0, \quad m \in \mathbb{R}^{+} \tag{3}
\end{equation*}
$$

which has attracted attention, and it has an extensive literature (see, e.g., [7], [8] and the references therein). Bihari [6] has generalized the A-T-S theorem to this equation in the case of smooth coefficient q, requiring "regular" growth
of q. Roughly speaking, this condition means that the growth of q cannot be located to a set with small measure (see Section 3). Of course, a step function q does not satisfy this condition. Elbert's method, using a wide and deep machinery from linear analysis, does not apply to the half-linear case.

In this paper we establish an A-T-S theorem for the half-linear differential equation with step function coefficient q. The proof is based upon a geometric method. This method applies also to the linear case, so we can give a new simple proof for Elbert's result, assuming only $\lim \sup _{n \rightarrow \infty} \prod_{k=0}^{n}\left\|\mathbf{M}_{k}\right\|<\infty$ instead of (i) - (iii).

2 Difference equation

To investigate equation (1), we will define a difference equation on the plane which has the same stability properties as equation (1). Let us introduce the following notations for the matrices of the reflection with respect to the x-axis, and of the rotation around the origin counterclockwise with φ in \mathbb{R}^{2} :

$$
\mathbf{R}=\left(\begin{array}{cc}
1 & 0 \tag{4}\\
0 & -1
\end{array}\right), \quad \mathbf{E}(\varphi)=\left(\begin{array}{cc}
\cos \varphi & -\sin \varphi \\
\sin \varphi & \cos \varphi
\end{array}\right)
$$

Obviously,

$$
\begin{equation*}
\mathbf{E}\left(\varphi_{1}\right) \mathbf{E}\left(\varphi_{2}\right)=\mathbf{E}\left(\varphi_{1}+\varphi_{2}\right), \quad \mathbf{E}(\varphi) \mathbf{R}=\mathbf{R E}(-\varphi) \tag{5}
\end{equation*}
$$

We will need the following theorem (see, e.g., [16, p. 188]):
Theorem (polar factorization). Every $\mathbf{M} \in \mathbb{R}^{n \times n}$ can be represented as a product $\mathbf{M}=\mathbf{S Q}$ where \mathbf{S} is symmetric, positive semi-definite, and \mathbf{Q} is orthogonal. \mathbf{S} is uniquely determined while \mathbf{Q} is unique if and only if \mathbf{M} is non-singular.

In this theorem \mathbf{S} is the square root of the symmetric positive semidefinite matrix $\mathbf{M}^{\mathrm{T}} \mathbf{M}$. If $\mathbf{M} \in \mathbb{R}^{n \times n}$ is non-singular, then the product $\mathbf{M}^{\mathrm{T}} \mathbf{M}$ is positive definite, thus it can be diagonalized: $\mathbf{M}^{\mathrm{T}} \mathbf{M}=\mathbf{P D}^{2} \mathbf{P}^{-1}$, where \mathbf{D}^{2} is the diagonal matrix containing the eigenvalues of $\mathbf{M}^{T} \mathbf{M}$ and the orthogonal matrix \mathbf{P} has the proper eigenvectors in its columns. Then $\mathbf{S}=\mathbf{P D P}^{-1}$ and

$$
\begin{equation*}
\mathbf{M}=\mathbf{P D P}^{-1} \mathbf{Q} \tag{6}
\end{equation*}
$$

EJQTDE, 2011 No. 38, p. 3

Denote by Λ and λ the eigenvalues of $\mathbf{M}^{\mathrm{T}} \mathbf{M}(\|\mathbf{M}\|=\Lambda \geq \lambda>0)$. Suppose that the diagonal elements in \mathbf{D} are in decreasing order. If $\operatorname{det} \mathbf{M}=0$, then \mathbf{S} is positive semi-definite and the symmetric matrix $\tilde{\mathbf{S}}:=\|\mathbf{M}\|^{-1} \mathbf{S}$ can be represented as $\tilde{\mathbf{S}}=\mathbf{P} \tilde{\mathbf{D}} \mathbf{P}^{-1}$, where \mathbf{P} is orthogonal and

$$
\tilde{\mathbf{D}}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)
$$

Applying the above argument to the coefficient matrices of (1), we have

$$
\begin{equation*}
\mathbf{M}_{n}=\left\|\mathbf{M}_{n}\right\| \mathbf{P}_{n} \hat{\mathbf{D}}_{n} \mathbf{P}_{n}^{-1} \mathbf{Q}_{n} \tag{7}
\end{equation*}
$$

where

$$
\hat{\mathbf{D}}_{n}:=\left(\begin{array}{cc}
1 & 0 \tag{8}\\
0 & d_{n}
\end{array}\right), \quad d_{n}:= \begin{cases}\sqrt{\frac{\lambda_{n}}{\Lambda_{n}}}>0, & \text { if } \operatorname{det} \mathbf{M}_{n} \neq 0 \\
0, & \text { if } \operatorname{det} \mathbf{M}_{n}=0\end{cases}
$$

Let us examine the flow $\mathbf{F}_{n}:=\prod_{k=0}^{n} \mathbf{M}_{k}$ of equation (1). Using the fact, that the product of orthogonal matrices are also orthogonal, \mathbf{F}_{n} has the form

$$
\begin{equation*}
\mathbf{F}_{n}=\prod_{k=0}^{n} \mathbf{P}_{k} \hat{\mathbf{D}}_{k} \mathbf{P}_{k}^{-1} \mathbf{Q}_{k}=\left(\prod_{k=0}^{n}\left\|\mathbf{M}_{k}\right\|\right) \mathbf{P}_{n}\left(\prod_{k=0}^{n} \hat{\mathbf{D}}_{k} \mathbf{O}_{k}\right) \tag{9}
\end{equation*}
$$

where the orthogonal matrices $\mathbf{O}_{k}(k=0, \ldots, n+1)$ are defined by

$$
\begin{equation*}
\mathbf{O}_{0}:=\mathbf{P}_{0}^{-1} \mathbf{Q}_{0}, \quad \mathbf{O}_{k}=\mathbf{P}_{k}^{-1} \mathbf{Q}_{k} \mathbf{P}_{k-1}, \quad k=1, \ldots, n \tag{10}
\end{equation*}
$$

and the product $\prod_{k=0}^{n} \mathbf{N}_{k}$ is meant in the order $\mathbf{N}_{n} \cdots \mathbf{N}_{0}$. It is known from the elementary geometry that in the plane every orthogonal transformation is a rotation or a product of a rotation and a reflection with respect to the x-axis. Thus, if \mathbf{O}_{k} is not a rotation, then let $\mathbf{O}_{k}=\mathbf{E}\left(\vartheta_{k}\right) \mathbf{R}$ for some ϑ_{k}. Since \mathbf{R} is commutable with every diagonal matrices, from (5) we obtain

$$
\begin{equation*}
\mathbf{F}_{n}=\left(\prod_{k=0}^{n}\left\|\mathbf{M}_{k}\right\|\right) \mathbf{R}^{m} \mathbf{E}\left(\alpha_{n}\right)\left(\prod_{k=0}^{n} \hat{\mathbf{D}}_{k} \mathbf{E}\left(\omega_{k}\right)\right) \tag{11}
\end{equation*}
$$

for some $m \in \mathbb{N}_{0}(m \leq n+1)$ and some ω_{k} 's, where α_{k}, ω_{k} can be calculated from $\mathbf{M}_{0}, \ldots, \mathbf{M}_{k}$.

Consider now the difference equation

$$
\begin{align*}
& \mathbf{x}_{n+1}=\left\|\mathbf{M}_{n}\right\|\left(\begin{array}{cc}
1 & 0 \\
0 & d_{n}
\end{array}\right)\left(\begin{array}{cc}
\cos \omega_{n} & -\sin \omega_{n} \\
\sin \omega_{n} & \cos \omega_{n}
\end{array}\right) \mathbf{x}_{n} \tag{12}\\
& 0 \leq d_{n} \leq 1, \quad n=0,1,2, \ldots
\end{align*}
$$

The equilibrium $(0,0)$ of (1) is stable (asymptotically stable) if and only if the equilibrium $(0,0)$ of (12) is stable (asymptotically stable). Now, we can state the main theorem of this section:

Theorem 1. Suppose that $\lim \sup _{n \rightarrow \infty} \prod_{k=0}^{n}\left\|\mathbf{M}_{k}\right\|<\infty$. If

$$
\begin{equation*}
\sum_{n=0}^{\infty} \min \left\{1-d_{n}, 1-d_{n+1}\right\} \sin ^{2} \omega_{n+1}=\infty \tag{13}
\end{equation*}
$$

then the zero solution of difference equation (12) is asymptotically stable.
Proof. Obviously, it is enough to deal with the case $\left\|\mathbf{M}_{k}\right\|=1(k=0,1, \ldots)$ and to show that $\left\|\prod_{n=0}^{\infty} \hat{\mathbf{D}}_{n} \mathbf{E}\left(\omega_{n}\right)\right\|=0$. Geometrically, the dynamics of (12) is composed of consecutive rotations and contractions along the y-axis. Let us introduce polar coordinates r, φ so that

$$
\mathbf{x}:=\binom{x}{y}, \quad x=r \sin \varphi, \quad y=r \cos \varphi .
$$

In these coordinates the phase space for system (12) is $r \geq 0,-\infty<\varphi<\infty$. Using the notations
$\tilde{\mathbf{x}}_{n}=\mathbf{E}\left(\omega_{n}\right) \mathbf{x}_{n}, \quad \kappa_{n}:=\varphi_{n+1}-\left(\varphi_{n}+\omega_{n}\right), \quad \Delta r_{n}:=r_{n+1}-r_{n}, \quad n=0,1, \ldots$
we have

$$
\begin{gathered}
\sqrt{x_{n}^{2}+y_{n}^{2}}=\sqrt{\tilde{x}_{n}^{2}+\tilde{y}_{n}^{2}}, \quad x_{n+1}=\tilde{x}_{n}, \quad y_{n+1}=d_{n} \tilde{y}_{n} \\
\varphi_{n+1}=\varphi_{0}+\sum_{i=0}^{n}\left(\omega_{i}+\kappa_{i}\right), \quad r_{n+1}=r_{0}+\sum_{i=0}^{n} \Delta r_{i},
\end{gathered}
$$

and $\Delta r_{i} \leq 0$ because of the contraction. Therefore, the sequence $\left\{r_{n}\right\}_{n=0}^{\infty}$ is monotonously decreasing.

Suppose that the statement of the theorem is not true, i.e., $\bar{r}:=\lim _{n \rightarrow \infty} r_{n}$ >0. Then

$$
\begin{align*}
-\Delta r_{i} & =r_{i}-r_{i+1}=\sqrt{x_{i}^{2}+y_{i}^{2}}-\sqrt{x_{i+1}^{2}+y_{i+1}^{2}} \\
& =\sqrt{\tilde{x}_{i}^{2}+\tilde{y}_{i}^{2}}-\sqrt{\tilde{x}_{i}^{2}+d_{i}^{2} \tilde{y}_{i}^{2}}=\frac{\left(1-d_{i}^{2}\right) \tilde{y}_{i}^{2}}{\sqrt{\tilde{x}_{i}^{2}+\tilde{y}_{i}^{2}}+\sqrt{\tilde{x}_{i}^{2}+d_{i}^{2} \tilde{y}_{i}^{2}}} \tag{14}\\
& \geq \frac{\left(1-d_{i}^{2}\right) r_{i}^{2} \cos ^{2}\left(\varphi_{i}+\omega_{i}\right)}{2 r_{i}} \geq \frac{\bar{r}}{2}\left(1-d_{i}\right) \cos ^{2}\left(\varphi_{i}+\omega_{i}\right) .
\end{align*}
$$

We want to get the contradiction that the sum of the lower estimating terms in (14) diverges. The problem is that these terms contain φ_{i} 's, which depend on solutions, so they are unknown; we have to get rid of them. Obviously,

$$
\begin{align*}
\left|\cos \left(\varphi_{i}+\omega_{i}\right)\right| & =\left|\cos \varphi_{i} \cos \omega_{i}-\sin \varphi_{i} \sin \omega_{i}\right| \\
& \geq\left|\sin \varphi_{i}\right|\left|\sin \omega_{i}\right|-\left|\cos \varphi_{i}\right|\left|\cos \omega_{i}\right| \tag{15}
\end{align*}
$$

For arbitrarily fixed $0<\gamma<\varepsilon<1$, define $\mu(\varepsilon, \gamma):=\sqrt{1-\gamma^{2}}-\varepsilon \gamma$. Since $\lim _{\varepsilon \rightarrow 0, \gamma \rightarrow 0} \mu(\varepsilon, \gamma)=1$, we may assume that $\mu(\varepsilon, \gamma) \geq 1 / 2$. We distinguish three cases:
a) $\gamma\left|\sin \omega_{i}\right| \geq\left|\cos \varphi_{i}\right|$ and $\left|\cos \boldsymbol{\omega}_{\boldsymbol{i}}\right| \geq \varepsilon$. Then $\left|\sin \varphi_{i}\right| \geq\left|\cos \omega_{i}\right|$, and from (15) we get

$$
\begin{equation*}
\left|\cos \left(\varphi_{i}+\omega_{i}\right)\right| \geq\left|\sin \omega_{i}\right|\left|\cos \omega_{i}\right|(1-\gamma) \geq\left|\sin \omega_{i}\right|(1-\gamma) \varepsilon \tag{16}
\end{equation*}
$$

In this case, estimate (14) is continued as

$$
\begin{equation*}
-\Delta r_{i} \geq \frac{\bar{r}}{2}\left(1-d_{i}\right) \cos ^{2}\left(\varphi_{i}+\omega_{i}\right) \geq \frac{\bar{r}}{2}(1-\gamma)^{2} \varepsilon^{2}\left(1-d_{i}\right) \sin ^{2} \omega_{i} . \tag{17}
\end{equation*}
$$

b) $\gamma\left|\sin \omega_{i}\right| \geq\left|\cos \varphi_{i}\right|$ and $\left|\cos \omega_{i}\right|<\varepsilon$. Then

$$
\begin{equation*}
\left|\sin \varphi_{i}\right| \geq \sqrt{1-\gamma^{2} \sin ^{2} \omega_{i}} \geq \sqrt{1-\gamma^{2}} \tag{18}
\end{equation*}
$$

and

$$
\left|\cos \left(\varphi_{i}+\omega_{i}\right)\right| \geq\left(\sqrt{1-\gamma^{2}}-\varepsilon \gamma\right)\left|\sin \omega_{i}\right|=\mu(\varepsilon, \gamma)\left|\sin \omega_{i}\right| \geq \frac{1}{2}\left|\sin \omega_{i}\right|
$$

Then

$$
\begin{equation*}
-\Delta r_{i} \geq \frac{\bar{r}}{2}\left(1-d_{i}\right) \cos ^{2}\left(\varphi_{i}+\omega_{i}\right) \geq \frac{\bar{r}}{8}\left(1-d_{i}\right) \sin ^{2} \omega_{i} . \tag{19}
\end{equation*}
$$

c) $\gamma\left|\sin \omega_{i}\right|<\left|\cos \varphi_{i}\right|$. In this case we can estimate $-\Delta r_{i-1}$ (instead of $-\Delta r_{i}$) from below by $\left|\sin \omega_{i}\right|$. In fact, using also the inequality

$$
\begin{align*}
\left|\cos \varphi_{i}\right| & =\frac{\left|y_{i}\right|}{\sqrt{x_{i}^{2}+y_{i}^{2}}}=\frac{d_{i-1}\left|\tilde{y}_{i-1}\right|}{\sqrt{\tilde{x}_{i-1}^{2}+d_{i-1}^{2} \tilde{y}_{i-1}^{2}}} \\
& \leq \frac{\left|\tilde{y}_{i-1}\right|}{\sqrt{\tilde{x}_{i-1}^{2}+\tilde{y}_{i-1}^{2}}}=\left|\cos \left(\varphi_{i-1}+\omega_{i-1}\right)\right| \tag{20}
\end{align*}
$$

from (14) we obtain

$$
\begin{align*}
-\Delta r_{i-1} & \geq \frac{\bar{r}}{2}\left(1-d_{i-1}\right) \cos ^{2}\left(\varphi_{i-1}+\omega_{i-1}\right) \geq \frac{\bar{r}}{2}\left(1-d_{i-1}\right) \cos ^{2} \varphi_{i} \\
& \geq \frac{\bar{r}}{2} \gamma^{2}\left(1-d_{i-1}\right) \sin ^{2} \omega_{i} \geq \frac{\bar{r}}{2} \gamma^{2} \min \left\{1-d_{i-1}, 1-d_{i}\right\} \sin ^{2} \omega_{i} . \tag{21}
\end{align*}
$$

Setting

$$
c:=\frac{\bar{r}}{2} \min \left\{(1-\gamma)^{2} \varepsilon^{2} ; \frac{1}{4} ; \gamma^{2}\right\}>0,
$$

for every i we have

$$
c \min \left\{1-d_{i-1} ; 1-d_{i}\right\} \sin ^{2} \omega_{i} \leq-\Delta r_{i-1}-\Delta r_{i}=r_{i-1}-r_{i+1} .
$$

Summarizing these inequalities we obtain

$$
c \sum_{i=1}^{\infty} \min \left\{1-d_{i-1} ; 1-d_{i}\right\} \sin ^{2} \omega_{i} \leq r_{0}-\bar{r}<\infty
$$

which contradicts assumption (13).

3 The half-linear equation

In this section we consider the half-linear second order differential equation

$$
\begin{equation*}
x^{\prime \prime}\left|x^{\prime}\right|^{n-1}+q(t)|x|^{n-1} x=0, \quad n \in \mathbb{R}^{+}, \tag{22}
\end{equation*}
$$

which was introduced by Bihari [5] and Elbert [9]. They called it half-linear because its solution set is homogeneous, but it is not additive. This equation is a generalization of the second order linear differential equation

$$
\begin{equation*}
x^{\prime \prime}+q(t) x=0 \tag{23}
\end{equation*}
$$

describing the motion of a linear oscillator. Following P. Hartman [13, p. 500], we call a non-trivial solution $x_{0}(t)$ of (22) small if

$$
\begin{equation*}
\lim _{t \rightarrow \infty} x_{0}(t)=0 \tag{24}
\end{equation*}
$$

H. Milloux [18] proved, that if q is differentiable, monotonously increasing and tends to infinity as $t \rightarrow \infty$, then the linear equation (23) has at least one small solution. He also constructed an equation with such a coefficient q having not small solutions, too. The famous Armellini-Tonelli-Sansone Theorem (see, e.g., [17]) gave a sufficient condition guaranteeing that all solutions of (23) were small. Many papers examined and sharpened the above theorems, even for nonlinear differential equations or difference equations (see, e.g., $[15,17]$ and the references therein).
F. V. Atkinson and Elbert [4] extended the theorem of H. Milloux to the half-linear differential equation (22). An extension of the A-T-S theorem to (22) was given by Bihari with the following concept. A nondecreasing function $f:[0, \infty) \rightarrow(0, \infty)$ with $\lim _{t \rightarrow \infty} f(t)=\infty$ is called to grow intermittently if for every $\varepsilon>0$ there is a sequence $\left\{\left(a_{i}, b_{i}\right)\right\}_{i=0}^{\infty}$ of disjoint intervals such that $a_{i} \rightarrow \infty$ as $i \rightarrow \infty$, and

$$
\limsup _{i \rightarrow \infty} \sum_{k=1}^{i} \frac{b_{k}-a_{k}}{b_{i}} \leq \varepsilon, \quad \sum_{i=1}^{\infty}\left(f\left(a_{i+1}\right)-f\left(b_{i}\right)\right)<\infty
$$

are satisfied. If such a sequence does not exist, then f is called to grow regularly.

Theorem B (Bihari [6]). If q is continuously differentiable and it grows to infinity regularly as $t \rightarrow \infty$, then all non-trivial solutions of equation (22) are small.

The simplest case of the intermittent growth is when q is a monotonously increasing step function. In this section we will examine this case, i.e., the equation

$$
\begin{equation*}
x^{\prime \prime}\left|x^{\prime}\right|^{n-1}+q_{k}|x|^{n-1} x=0 \quad\left(t_{k} \leq t<t_{k+1}, k=0,1, \ldots\right), \tag{25}
\end{equation*}
$$

where

$$
\begin{gathered}
t_{0}=0, \quad \lim _{k \rightarrow \infty} t_{k}=\infty \\
0<q_{0} \leq q_{1} \leq \ldots \leq q_{k} \leq q_{k+1} \leq \ldots, \quad \lim _{k \rightarrow \infty} q_{k}=\infty
\end{gathered}
$$

In [14], the first author of this paper showed that under these conditions equation (25) has a small solution. Elbert [11, 12] proved an A-T-S theorem for the linear ($n=1$) case of equation (25) as a direct application of his theorem on the asymptotic stability of the trivial solution of (1).
Theorem C (Elbert [11]). Let $n=1$. If

$$
\begin{equation*}
\sum_{k=0}^{\infty} \min \left\{1-\frac{q_{k}}{q_{k+1}}, 1-\frac{q_{k+1}}{q_{k+2}}\right\} \sin ^{2}\left(\sqrt{q_{k+1}}\left(t_{k+2}-t_{k+1}\right)\right)=\infty \tag{26}
\end{equation*}
$$

then all non-trivial solutions of equation (25) are small.
Our main goal is to extend Theorem C to the case $n>1$ of half-linear equation (25). To this end, we need the so-called generalized sine and cosine functions introduced by Elbert [9]. Consider the solution $S=S_{n}(\Phi)$ of the initial value problem

$$
\left\{\begin{array}{l}
S^{\prime \prime}\left|S^{\prime}\right|^{n-1}+S|S|^{n-1}=0 \tag{27}\\
S(0)=0, \quad S^{\prime}(0)=1
\end{array}\right.
$$

Multiplying the differential equation by S^{\prime} and integrating it over $[0, \Phi]$ we obtain the relation

$$
\begin{equation*}
\left|S^{\prime}\right|^{n+1}+|S|^{n+1}=1 \quad(-\infty<\Phi<\infty) \tag{28}
\end{equation*}
$$

which can be considered as a generalization of the classical identity $\cos ^{2} \varphi+$ $\sin ^{2} \varphi=1$ (the case $n=1$). S and S^{\prime} are periodic functions with period $2 \hat{\pi}$, where $\hat{\pi}$ is defined as

$$
\hat{\pi}=\frac{2 \frac{\pi}{n+1}}{\sin \frac{\pi}{n+1}}
$$

which gives back π in the ordinary case $n=1$ (see [9]). Furthermore, S is odd and S^{\prime} is even. The generalized tangent function can be introduced as well:

$$
T(\Phi)=\frac{S(\Phi)}{S^{\prime}(\Phi)}
$$

Now we can state our main theorem.
Theorem 2. Let $n>1$. If

$$
\begin{equation*}
\sum_{k=0}^{\infty} \min \left\{1-\frac{q_{k}}{q_{k+1}}, 1-\frac{q_{k+1}}{q_{k+2}}\right\}\left|S\left(q_{k+1}^{\frac{1}{n+1}}\left(t_{k+2}-t_{k+1}\right)\right)\right|^{n+1}=\infty \tag{29}
\end{equation*}
$$

then all non-trivial solutions of equation (25) are small.

Proof. First, using the notation $q(t):=q_{k}\left(t_{k} \leq t<t_{k+1}, k=0,1,2 \ldots\right)$ we introduce a new time variable

$$
\begin{equation*}
\tau=\varphi(t)=\int_{0}^{t} q(s)^{\frac{1}{n+1}} \mathrm{~d} s, \quad \tau_{k}:=\varphi\left(t_{k}\right) \tag{30}
\end{equation*}
$$

Let $x(t)=x\left(\varphi^{-1}(\tau)\right)=: y(\tau)$, where φ^{-1} is the inverse function of φ. Then

$$
x^{\prime}(t)=\dot{y}(\tau) q^{\frac{1}{n+1}}(t), \quad x^{\prime \prime}(t)=\ddot{y}(\tau) q^{\frac{2}{n+1}}(t) \quad\left(t \neq t_{k}, k=0,1,2, \ldots\right)
$$

where $(\cdot)^{\cdot}=\mathrm{d}(\cdot) / \mathrm{d} \tau$. Thus, equation (25) is transformed into the form

$$
\begin{equation*}
\ddot{y}(\tau)|\dot{y}(\tau)|^{n-1}+|y(\tau)|^{n-1} y(\tau)=0, \quad\left(\tau \neq \tau_{k} k=0,1, \ldots\right) . \tag{31}
\end{equation*}
$$

Since any solution x of equation (25) has to be continuously differentiable on $(0, \infty), x^{\prime}\left(t_{k+1}-0\right)=x^{\prime}\left(t_{k+1}+0\right)=x^{\prime}\left(t_{k+1}\right)$ must hold for every $k \in \mathbb{N}$, i.e.,

$$
\dot{y}\left(\tau_{k+1}\right)=\dot{y}\left(\tau_{k+1}+0\right)=\left(\frac{q_{k}}{q_{k+1}}\right)^{\frac{1}{n+1}} \dot{y}\left(\tau_{k+1}-0\right)
$$

where $f(t-0)$ and $f(t+0)$ denotes the left-hand side and the right-hand side limit of a function f at t, respectively. We obtain that (25) is equivalent to the following differential equation with impulses:

$$
\begin{cases}\ddot{y}(\tau)|\dot{y}(\tau)|^{n-1}+|y(\tau)|^{n-1} y(\tau)=0, & \tau \neq \tau_{k} \tag{32}\\ \dot{y}\left(\tau_{k+1}\right)=\left(\frac{q_{k}}{q_{k+1}}\right)^{\frac{1}{n+1}} \dot{y}\left(\tau_{k+1}-0\right), & k=0,1,2, \ldots\end{cases}
$$

Let us introduce the generalized polar coordinates $\dot{y}=\rho S^{\prime}(\Phi), y=\rho S(\Phi)$, where

$$
\rho=\left(|\dot{y}|^{n+1}+|y|^{n+1}\right)^{\frac{1}{n+1}}, \quad T(\Phi)=\frac{y}{\dot{y}}, \quad-\infty<\Phi<\infty .
$$

This is the so-called generalized Prüfer transformation. With the aid of these variables we can rewrite equation (31) into

$$
\begin{equation*}
\dot{\Phi}=1, \quad \dot{\rho}=0, \quad\left(\tau_{k} \leq \tau<\tau_{k+1}, k=0,1, \ldots\right) \tag{33}
\end{equation*}
$$

So the dynamics of system (32) on the Minkowski plane [19] (\dot{y}, y) is the following. It turns any point $\left(\dot{y}_{0}, y_{0}\right)$ around the origin on the Minkowski
circle with radius $\rho_{0}:=\left(\left|\dot{y}_{0}\right|^{n+1}+\left|y_{0}\right|^{n+1}\right)^{\frac{1}{n+1}}$ on $\left[\tau_{0}, \tau_{1}\right)$, and at τ_{1} the point $\left(\dot{y}\left(\tau_{1}-0\right), y\left(\tau_{1}-0\right)\right)$ jumps to the point

$$
\left(\dot{y}\left(\tau_{1}\right), y\left(\tau_{1}\right)\right):=\left(\left(\frac{q_{0}}{q_{1}}\right)^{\frac{1}{n+1}} \dot{y}\left(\tau_{1}-0\right), y\left(\tau_{1}-0\right)\right)
$$

This process is repeated consecutively for $\left[\tau_{1}, \tau_{2}\right),\left[\tau_{2}, \tau_{3}\right), \ldots$. Define

$$
\begin{gathered}
\rho_{k}:=\left(\left|\dot{y}\left(\tau_{k}\right)\right|^{n+1}+\left|y\left(\tau_{k}\right)\right|^{n+1}\right)^{\frac{1}{n+1}}, \quad \Phi_{k}:=\Phi\left(\tau_{k}\right), \quad \Omega_{k}:=\tau_{k+1}-\tau_{k}, \\
\Delta \rho_{k}:=\rho_{k+1}-\rho_{k}, \quad \kappa_{k}:=\Phi_{k+1}-\left(\Phi_{k}+\Omega_{k}\right),
\end{gathered} \quad k=0,1, \ldots,
$$

Obviously,

$$
\Phi_{k+1}=\Phi_{0}+\sum_{i=0}^{k}\left(\Omega_{i}+\kappa_{i}\right), \quad \rho_{k+1}=\rho_{0}+\sum_{i=0}^{k} \Delta \rho_{i}, \quad k=0,1 \ldots
$$

Since $\Delta \rho_{i} \leq 0$, the sequence $\left\{\rho_{k}\right\}_{k=0}^{\infty}$ is monotonously decreasing, therefore it has a limit $\bar{\rho}:=\lim _{k \rightarrow \infty} \rho_{k}$. If the statement of the theorem is not true, then there exists a solution (ρ, Φ) such that $\bar{\rho}>0$. Let us consider this solution and estimate $-\Delta \rho_{i}$:

$$
\begin{align*}
-\Delta \rho_{i}= & \rho_{i}-\rho_{i+1} \\
= & \left(\left|\dot{y}\left(\tau_{i}\right)\right|^{n+1}+\left|y\left(\tau_{i}\right)\right|^{n+1}\right)^{\frac{1}{n+1}}-\left(\left|\dot{y}\left(\tau_{i+1}\right)\right|^{n+1}+\left|y\left(\tau_{i+1}\right)\right|^{n+1}\right)^{\frac{1}{n+1}} \\
= & \left(\left|\dot{y}\left(\tau_{i+1}-0\right)\right|^{n+1}+\left|y\left(\tau_{i+1}-0\right)\right|^{n+1}\right)^{\frac{1}{n+1}} \\
& -\left(\left|\dot{y}\left(\tau_{i+1}\right)\right|^{n+1}+\left|y\left(\tau_{i+1}\right)\right|^{n+1}\right)^{\frac{1}{n+1}} \\
= & \left(\left|\dot{y}\left(\tau_{i+1}-0\right)\right|^{n+1}+\left|y\left(\tau_{i+1}-0\right)\right|^{n+1}\right)^{\frac{1}{n+1}} \\
& -\left(\frac{q_{i}}{q_{i+1}}\left|\dot{y}\left(\tau_{i+1}-0\right)\right|^{n+1}+\left|y\left(\tau_{i+1}-0\right)\right|^{n+1}\right)^{\frac{1}{n+1}} \tag{34}\\
= & \frac{1}{n+1}\left(\rho_{i+1}^{n+1}+\eta_{i}\left(\rho_{i}^{n+1}-\rho_{i+1}^{n+1}\right)\right)^{-\frac{n}{n+1}} \\
& \times\left(1-\frac{q_{i}}{q_{i+1}}\right)\left|\dot{y}\left(\tau_{i+1}-0\right)\right|^{n+1} \\
\geq & \frac{1}{n+1}\left((\bar{\rho})^{n+1}\right)^{-\frac{n}{n+1}}\left(1-\frac{q_{i}}{q_{i+1}}\right) \rho_{i}^{n+1}\left|S^{\prime}\left(\Phi_{i}+\Omega_{i}\right)\right|^{n+1} \\
\geq & \frac{\bar{\rho}}{n+1}\left(1-\frac{q_{i}}{q_{i+1}}\right)\left|S^{\prime}\left(\Phi_{i}+\Omega_{i}\right)\right|^{n+1}
\end{align*}
$$

EJQTDE, 2011 No. 38, p. 11
with some $\eta_{i} \in(0,1)$ for all $i \in \mathbb{N}_{0}$. Now we need to estimate $\left|S^{\prime}\left(\phi_{i}+\Omega_{i}\right)\right|$ from below by either $\left|S\left(\Omega_{i}\right)\right|$ or $\left|S\left(\Omega_{i+1}\right)\right|$, similarly to the proof of Theorem 1 , where we used the addititonal formulae for the cosine function. However, to our best knowledge, the problem of finding exact addition formulae for S and S^{\prime} is not completely solved, although there are some papers about this topic (see, e.g., [1], [2]). Therefore, to complete the proof we need a new method different from one we used in the proof of Theorem 1 after formula (14).

Functions $\left|S^{\prime}(\Phi+\Omega)\right|$ and $|S(\Omega)|$ are $\hat{\pi}$-periodic with respect to both variables Φ, Ω, hence we may restrict ourselves to the quadrant $[-\hat{\pi} / 2, \hat{\pi} / 2] \times$ $[-\hat{\pi} / 2, \hat{\pi} / 2]$ on the (Φ, Ω) plane. Thanks to the symmetry properties of S and S^{\prime}, it is enough to make the estimate on $Q:=[0, \hat{\pi} / 2] \times[0, \hat{\pi} / 2]$.

At first, let us handle the set

$$
Q_{\varepsilon}:=\left\{(\Phi, \Omega) \in Q:\left|S^{\prime}(\Phi)\right|<\varepsilon\right\}
$$

where $\varepsilon>0$ is small enough. The complementer set of Q_{ε} with respect to Q will be treated in another way. The same way will be used also for the complementer set of

$$
Q^{\gamma}:=\left\{(\Phi, \Omega) \in Q:\left|S^{\prime}(\Phi)\right| \leq \gamma|S(\Omega)|\right\} \quad(0<\gamma<1)
$$

so now we consider the set $Q_{\varepsilon}^{\gamma}:=Q_{\varepsilon} \cap Q^{\gamma}$ (see the figure).
A part of the boundary of this set is a piece of the curve defined by the equation

$$
\Gamma:\left|S^{\prime}(\Phi)\right|=\gamma|S(\Omega)|
$$

We show that the tangent to Γ at $(\hat{\pi} / 2,0)$ is the line $\Phi=\hat{\pi} / 2$, i.e.,

$$
\begin{equation*}
\lim _{\Phi \rightarrow \frac{\pi}{2}-0} f^{\prime}(\Phi)=-\infty ; \quad f(\Phi):=S^{-1}\left(\frac{1}{\gamma} S^{\prime}(\Phi)\right) \tag{35}
\end{equation*}
$$

provided $n>1$. The statement of the theorem for the linear case $n=1$ was proved in Theorem 1, so proving (35) we can restrict ourselves to the case $n>1$.

It is easy to see that

$$
\left(S^{-1}\right)^{\prime}(W)=\frac{1}{\left(1-W^{n+1}\right)^{\frac{1}{n+1}}} \quad(0 \leq W \leq 1)
$$

EJQTDE, 2011 No. 38, p. 12

Besides, by equation (27) we have

$$
\begin{equation*}
S^{\prime \prime}(\Phi)=-\left|S^{\prime}(\Phi)\right|^{-n+1}|S(\Phi)|^{n-1} S(\Phi) . \tag{36}
\end{equation*}
$$

Therefore,

$$
\frac{\mathrm{d}}{\mathrm{~d} \Phi} f(\Phi)=f^{\prime}(\Phi)=\frac{-\frac{1}{\gamma}\left(S^{\prime}(\Phi)\right)^{-n+1} S^{n}(\Phi)}{\left(1-\frac{1}{\gamma^{n+1}}\left(S^{\prime}(\Phi)\right)^{n+1}\right)^{\frac{1}{n+1}}}
$$

consequently, (35) holds, independently of γ. (35) implies the existence of a
$\delta>0$ such that

$$
f^{\prime}(\Phi)<-2 \quad\left(\left(S^{\prime}\right)^{-1}(\varepsilon)<\frac{\hat{\pi}}{2}-\delta<\Phi<\frac{\hat{\pi}}{2}\right)
$$

whence we get

$$
f(\Phi) \geq-2\left(\Phi-\frac{\hat{\pi}}{2}\right)
$$

which means that Γ is located on the right-hand side of the line $\Omega=-2(\Phi-$ $\hat{\pi} / 2)$ near the point $(\hat{\pi} / 2,0)$ (see the figure). To estimate $\left|S^{\prime}\left(\Phi_{i}+\Omega_{i}\right)\right|$ from below by $\left|S\left(\Omega_{i}\right)\right|$ in (34) we have to estimate the quotient $\left|S^{\prime}(\Phi+\Omega)\right| /|S(\Omega)|$ from below. In Q_{ε}^{γ} we decrease this quotient exchanging point (Φ, Ω) for the horizontally corresponding point $(\hat{\pi} / 2-\Omega / 2, \Omega)$ of the line $\Phi=\hat{\pi} / 2-\Omega / 2$ (see the figure again). Therefore, by the L'Hospital Rule and (36) we get

$$
\begin{aligned}
& \lim _{\Phi \rightarrow \frac{\hat{\pi}}{2}-0, \Omega \rightarrow 0+0,(\Phi, \Omega) \in Q_{\varepsilon}^{\gamma}} \frac{\left|S^{\prime}(\Phi+\Omega)\right|}{|S(\Omega)|} \geq \lim _{\Omega \rightarrow 0+0} \frac{-S^{\prime}\left(\left(\frac{\hat{\pi}}{2}-\frac{1}{2} \Omega\right)+\Omega\right)}{S(\Omega)} \\
& \quad=\lim _{\Omega \rightarrow 0+0} \frac{-S^{\prime}\left(\frac{\hat{\pi}}{2}+\frac{1}{2} \Omega\right)}{S(\Omega)}=\lim _{\Omega \rightarrow 0+0} \frac{-S^{\prime \prime}\left(\frac{\hat{\pi}}{2}+\frac{1}{2} \Omega\right) \frac{1}{2}}{S^{\prime}(\Omega)} \\
& \quad=\lim _{\Omega \rightarrow 0+0} \frac{\left|S^{\prime}\left(\frac{\hat{\pi}}{2}+\frac{\Omega}{2}\right)\right|^{-n+1}\left|S\left(\frac{\hat{\pi}}{2}+\frac{\Omega}{2}\right)\right|^{n-1} S\left(\frac{\hat{\pi}}{2}+\frac{\Omega}{2}\right)}{2 S^{\prime}(\Omega)}=\infty .
\end{aligned}
$$

This means that there exists a $\kappa>0$ such that

$$
\begin{equation*}
\left|S^{\prime}(\Phi+\Omega)\right| \geq \kappa|S(\Omega)| \quad\left((\Phi, \Omega) \in Q_{\varepsilon}^{\gamma}\right) \tag{37}
\end{equation*}
$$

Now we are ready to complete estimate (34). We distinguish three cases:
A) $\left(\Phi_{\boldsymbol{i}}, \boldsymbol{\Omega}_{\boldsymbol{i}}\right) \in \boldsymbol{Q}_{\varepsilon}^{\gamma}$. Then by (34) and (37) we have

$$
\begin{equation*}
-\Delta \rho_{i} \geq \frac{\bar{\rho}}{n+1}\left(1-\frac{q_{i}}{q_{i+1}}\right) \kappa^{n+1}\left|S\left(\Omega_{i}\right)\right|^{n+1} . \tag{38}
\end{equation*}
$$

In the remaining cases we estimate $-\Delta \rho_{i-1}$. By the analogue of (20) it is always true that

$$
\begin{array}{r}
-\Delta \rho_{i-1} \geq \frac{\bar{\rho}}{n+1}\left(1-\frac{q_{i-1}}{q_{i}}\right)\left|S^{\prime}\left(\Phi_{i-1}+\Omega_{i-1}\right)\right|^{n+1} \\
\geq \frac{\bar{\rho}}{n+1}\left(1-\frac{q_{i-1}}{q_{i}}\right)\left|S^{\prime}\left(\Phi_{i}\right)\right|^{n+1}
\end{array}
$$

B) $\left(\boldsymbol{\Phi}_{\boldsymbol{i}}, \boldsymbol{\Omega}_{\boldsymbol{i}}\right) \in \boldsymbol{Q}_{\boldsymbol{\varepsilon}} \backslash \boldsymbol{Q}_{\boldsymbol{\varepsilon}}^{\gamma}$. Then $\left|S^{\prime}\left(\Phi_{i}\right)\right| \geq \gamma\left|S\left(\Omega_{i}\right)\right|$, and

$$
\begin{equation*}
-\Delta \rho_{i-1} \geq \gamma^{n+1} \frac{\bar{\rho}}{n+1}\left(1-\frac{q_{i-1}}{q_{i}}\right)\left|S\left(\Omega_{i}\right)\right|^{n+1} \tag{39}
\end{equation*}
$$

C) $\left(\boldsymbol{\Phi}_{i}, \boldsymbol{\Omega}_{i}\right) \in \boldsymbol{Q} \backslash \boldsymbol{Q}_{\boldsymbol{\varepsilon}}$. Then $\left|S^{\prime}\left(\Phi_{i}\right)\right| \geq \varepsilon\left|S\left(\Omega_{i}\right)\right|$ and

$$
\begin{equation*}
-\Delta \rho_{i-1} \geq \varepsilon^{n+1} \frac{\bar{\rho}}{n+1}\left(1-\frac{q_{i-1}}{q_{i}}\right)\left|S\left(\Omega_{i}\right)\right|^{n+1} \tag{40}
\end{equation*}
$$

Setting

$$
C:=\frac{\bar{\rho}}{n+1} \min \left\{\kappa^{n+1} ; \gamma^{n+1} ; \varepsilon^{n+1}\right\}>0
$$

and taking into account (38), (39), (40), for every i we have

$$
C \min \left\{1-\frac{q_{i-1}}{q_{i}} ; 1-\frac{q_{i}}{q_{i+1}}\right\}\left|S\left(\Omega_{i}\right)\right|^{n+1} \leq \Delta \rho_{i-1}-\Delta \rho_{i}=\rho_{i-1}-\rho_{i+1}
$$

Summarizing these inequalities we obtain

$$
C \sum_{n=1}^{\infty} \min \left\{1-\frac{q_{i-1}}{q_{i}} ; 1-\frac{q_{i}}{q_{i+1}}\right\}\left|S\left(\Omega_{i}\right)\right|^{n+1} \leq \rho_{0}-\bar{\rho}<\infty
$$

which contradicts the assumption of the theorem.
Theorem 2 extends Elbert's Theorem C to half-linear equations provided $n>1$. It would bee interesting to find an extension to the case $n<1$, too.

References

[1] I. Adamaszek, On generalized sine and cosine functions, Demonstratio Math. 28(1995), 263-270.
[2] I. Adamaszek-Fidytek, On generalized sine and cosine functions, II. Demonstratio Math. 37(2004), 571-578.
[3] R. P. Agarwal, Difference Equations and Inequalities, Monographs and Textbooks in Pure and Applied Mathematics, vol. 115, Marcel Dekker, Inc., New York, 1992.
[4] F. V. Atkinson, Á. Elbert, An extension of Milloux's theorem to halflinear differential equations, Proc. 6'th Colloq. Qual. Theory Differ. Equ., No. 8, Electron. J. Qual. Theory Differ. Equ., Szeged, 2000.
[5] I. Bihari, Ausdehnung der Sturmschen Oscillations und Vergleichssätze auf die Lösungen gewisser nichtlinearen Differentialgleichungen zweiter Ordnung, Publ. Math. Inst. Hungar. Acad. Sci., 2(1957), 154-165.
[6] I. Bihari, Asymptotic result concerning equation $x^{\prime \prime}\left|x^{\prime}\right|^{n-1}+a(t) x^{*}$. Extension of a theorem by Armellini-Tonelli-Sansone, Studia Sci. Math. Hungar. 19(1984), 151-157.
[7] O. Došlý, Half-linear differential equations, Handbook of Differential Equations, 161-357, Elsevier/North-Holland, Amsterdam, 2004.
[8] O. Došlý, P. Řehák, Half-linear Differential Equations, Elsevier/NorthHolland, Amsterdam, 2005.
[9] Á. Elbert, A half-linear second order differential equation, Qualitative Theory of Differential Equations, Vol. I, II (Szeged, 1979), 153-180, Colloq. Math. Soc. János Bolyai, 30, North-Holland, Amsterdam-New York, 1981.
[10] Á. Elbert, Stability of some difference equations, Advances in Difference Equations: Proceedings of the Second International Conference on Difference Equations and Applications, Veszprém, Hungary, 7-11 August 1995, Gordon and Breach Science Publishers, 1997, 155-178.
[11] Á. Elbert, On asymptotic stability of some Sturm-Liouville differential equations, General Seminar in Mathematics, University of Patras, 2223(1996/97), 57-66.
[12] Á. Elbert, On damping of linear oscillators, Studia Sci. Math. Hungar. 38(2001), 191-208.
[13] P. Hartman, Ordinary Differential Equations, Birkhäuser, Boston, 1982.
[14] L. Hatvani, On stability properties of solutions of second order differential equations, Proc. 6 'th Colloq. Qual. Theory Differ. Equ., No. 11, Electron. J. Qual. Theory Differ. Equ., Szeged, 2000.
[15] L. Hatvani, The growth condition guaranteeing small solutions for a linear oscillator with an increasing elasticity coefficient, Georgian Math. J. 14(2007), no. 2, 269-278.
[16] N. Jacobson, Lectures in Abstract Algebra, II. Linear Algebra, Springer Verlag (New York - Heidelberg - Berlin), 1953.
[17] J. W. Macki, Regular growth and zero tending solutions, Ordinary Differential Equations and Operators (Dundee, 1982), Lecture Notes in Math., vol. 1032, 358-399.
[18] H. Milloux, Sur l'equation differentielle $x^{\prime \prime}+A(t) x=0$, Prace Mat.-Fiz., 41(1934), 39-54.
[19] H. Rund, The Differential Geometry of Finsler Spaces, Springer, Berlin, 1959.
(Received April 2, 2011)

[^0]: *Supported by the Hungarian National Foundation for Scientific Research (OTKA K75517), Analysis and Stochastics Research Group of the Hungarian Academy of Sciences, and TÁMOP 4.2.2.

